
12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 1/6

CS3733 Team Project Report

Ohtaki
Haley Hauptfeld

Sophiya Litovchick
Rebecca Markowitz

Nick St. George

Purpose

The purpose of this document is to provide evidence for the different roles of the team
Members, as well as outline the project and explain how it was completed by the team.

Introduction

The project created by team Ohtaki is called Meeting Scheduler. The purpose of Meeting
Scheduler is to provide a simple website to schedule meetings. There are three main functions of
this site, the first is to allow an organizer to create a schedule that will be be automatically
populated with open meeting slots during the time and date period specified upon creation. The
site also allows the organizer to go back and edit the schedule they created to either close or open
slots, or cancel meetings. The second function is to allow a participant to enter into a specified
organizers schedule in order to book a meeting. They can also cancel meetings they previously
created. Finally the System Administrator can upkeep the entire system by either retrieving
recently created schedules, or deleting schedules that are older than a specified amount of time.

This project was completed over the course of four weeks and utilized many areas of
computer science. The website front end was displayed and created using JavaScript and HTML.
The back end logic was created using Java. In order to store, retrieve, and send information
between the back end and front end, Amazon Web Services (AWS) was utilized. The data
created was also stored in the mySQL database hosted on AWS.

This project provided many challenges due to the nature of working with new
programming languages and services. However, through research and time, the team was able to
create a completed working product.

Team organization, members, and responsibilities

Ohtaki is a four member team, which allowed the team to be flexible with its leadership
positions and roles. All members took on leadership responsibilities equally. Most of these
responsibilities included calling meetings when they felt necessary, booking rooms or finding
space to work together as a group. One major component in the organization of the group was
making sure each member has an up-to-date outlook calendar, which makes it easy to schedule
meetings when comparing everyone’s schedule at once. This was decided upon by the team
because we felt that, with a small group, giving everyone equal leadership would facilitate the
best communication and collaboration. Each member took on a leadership roles in their
particular area of the project. The group communicated by send Outlook meetings to each others
when necessary and using the app, GroupMe, which each team member could access on their

1

12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 2/6

phone and computer. GroupMe also provided us with a secondary side channel to relieve stress
and send funny Memes to each other.

Meetings were held about 3 times a week when planning out the project. When the group
moved onto implementation and testing, an hourly meeting was held every work day in order to
allow members to ask questions and communicate daily. Additional many meetings were called
between members of the team whenever a new feature needed to be tested or implemented. Most
of our implementation meetings were held during the last two weeks of the project.

The Entity Boundary Controller (EBC) design was created by all team member equally,
by splitting up the initial problem statement into use cases and assigning each team member an
equal amount. The Unified Modeling Language (UML) diagram was collaboratively created by
the entire team. The mock API was created by Rebecca and Sophiya. The database and database
access objects (DAOs) where created and maintained by Sophiya. The lambda functions were led
by Rebecca with the help of Nick. The front end, HTML and Javascript, was created and
maintained by Haley. Connecting the front end and back end was implemented by Rebecca and
Haley, along with troubleshooting AWS. Nick took lead with version control on Git and making
sure everyone else in the group understood how to use Git. Sophiya wrote the group report, and
Haley wrote the README file, which includes all of the instructions on how to use the GUI
properly.

The team kept track of the HTML code created by keeping on the most updated and
functioning version of it in the AWS Simple Storage Service (S3) bucket. The back end code was
organized with the help of Git and GitKraken, a program that can connect to Eclipse and visually
keep track of code branches. Each team member created their own branch and each was tested,
and the functional release was pushed to the master. There were also additional branches that
were added, when merges were unsuccessful and version control was needed.

Process

The processes of creating Meeting Scheduler started from base analysis using the EBC
design paradigm. The problem statement was first broken into a total of around 15 use cases that
would become the functionality of the website.These use cases made up the controller aspect of
EBC. Once these use cases were solidified, the entity and boundary were discussed. Initially, the
model consisted of many classes in order to allow for flexibility (Fig. 1). However, as the team
got further into the project, the model was edited to reflect the functionality needed by the team.
The final UML diagram is shown in (Fig. 2).

2

12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 3/6

Fig. 1

Fig. 2

Once the analysis was completed, the team began laying down the base for

implementation. First, a mock API was created using SwaggerHub. This allowed the team to get

3

12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 4/6

a better understanding about how to interact between the lambda functions and the front end.
This API created the basis of request and return types that the front end would send and receive.
The team then started work on creating the AWS set up necessary to run the program. The team
used the S3 buckets and Lambda functions, and Relational Data Service (RDS). The team
connected to the AWS and created the S3 bucket along with the database.

Once all the set up for the project was completed, the team began implementation.
Initially, only one lambda function was created and used to test out how the system would work.
Additionally, the database was created using mySQL and DAO functions. The structure of the
database is very different from how entities are structured using java code, thus many changed to
the initial entity classes that were made when creating the new UML seen above (fig 2). Once the
first function was tested and properly working, the rest of the lambda functions were written
based upon this. The DAO were utilized as helper functions to retrieve data from the database in
an organized fashion as specified by the lambda functions. It was integral to communicate
between the person creating the DAO and the lambda functions in order to return the correct data
types that the lambda function needed.

Once all the lambda functions were written, they were connected to the front end. At first,
the group found difficulty connecting the lambda functions. This is due to the fact that there are
multiple ways to connect the lambda through AWS. In the sample project created by the
professor, wrote the lambda functions in a different way in Java, and used lambda proxy
integration default settings in AWS. Since the Ohtaki group set up the lambda functions
differently, they had to manually write headers into the API integration. This took a good amount
of time to figure out, but once this was realized, connecting the backend to the frontend was
smooth sailing. A large reason for the amount of time spent on this problem was because the
group did not know this was an AWS setup problem and instead they were trying to debug their
own project code.

Additionally, the HTTP methods outlined in the API were not entirely correct for the
needs of the group. Many changes were made to the API model through AWS at this time. The
group decided to use a different method than the example shown in class and thus had to go
through troubleshooting before figuring out the proper method. The group only used Post
methods in the project, because the other methods did not work when trying to be implemented.
However, once this was discovered, the subsequent lambda functions were able to be connected
in an efficient manner.

Finally the group worked on debugging the front end. The existing javascript embedded
within the HTML was mostly untested due to the fact that it is hard to test without the data
received from the lambda functions. The group spent the last week working on connecting
lambda functions and then debugging the javascript for each one. This was very efficiently done
by having Rebecca, the lead lambda function coder, and Haley, the front end coder, pair program
each API connection and request and response.

The project’s main functionality is complete and all the javascript is debugged. Due to the
set-back experiences with AWS integration, there were a few additional lambda functions that
were unable to be implemented by the end. These functions were determined by the team to be
non-essential, or special features of the system. Due to the well defined base code, these features
could easily be implemented within a day or two, if given the time. However, gaining an in-depth
understanding of AWS was beneficial to the whole team and will allow the team to utilize these
skills more efficiently in the future.

4

12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 5/6

Tools

The team used many tools to complete the project. StarUML was used to create the UML
diagram. This tool was very helpful for creating visuals, but did not function very well and was
tedious to work with when creating the diagram. In order to keep track of and share code,
GitHub was used, along with the desktop app, GitKraken, that provided a better interface when
connecting git to the Eclipse IDE used by the team. GitKraken was extremely helpful because it
allowed the team to use git more efficiently. The Eclipse IDE does not have good built-in git
integration. Atom was used for the HTML and JavaScript. It is a simple text editor that made it
easier to write the front-end. Additionally, Amazon Web Services was used to upload the
controller functions (called lambda functions) to a server along with the HTML code. AWS also
provided a server for the database created. The database was maintained and created with
MySQL, using the MySQL Workbench. For team communication, Microsoft Outlook and
GroupMe were used.

Accomplishments

Use Cases implemented:
● Create Meeting Schedule
● Close Meeting Slot
● Open Meeting Slot
● Cancel Meeting Organizer
● Send Meeting Schedule
● Delete Meeting Schedule
● Create Meeting Participant
● Cancel Meeting Participant
● Delete Past Scheduled Meeting
● Review Newly Created Meetings. T

Use cases written but not implemented in front end:
● Search Open Time Slot
● Extend Schedule End Date
● Extend Schedule Start

Use cases not yet written:
● Close/Open All Slots At Time
● Close/Open All Slots On Day

Deliverables

The deliverables are the website itself, Meeting Scheduler. Along with the final
README, also called Manual. This Manual outlines all the slightly unconventional formatting
and wait times when using the Meeting Scheduler, along with a general outline on the
functionality of each button and input.

Reflection

The group put in a lot of work. However due to a lack of experience with AWS and web
development, there were a couple places where the group failed. This caused overall set backs.
Having good communication worked for our team. However, sometimes members would not

5

12/14/2018 final report - Google Docs

https://docs.google.com/document/d/1yDJmlCgkT1QgPGxDiAUC-KfA2B74-Jw8HX_NUHv6YDQ/edit 6/6

fully articulate when they were having issues or not fully understanding how to write a function.
This also caused problems when other members had to rewrite someone else’s code in order to
have it work properly. This definitely added a lot of time, that could have been spent
implementing and planning new lambda functions or working on JavaScript. The root cause of
this was miscommunication on how to write and structure the lambda functions to be consistent
with the API, which caused a lot of re-writing and lost time.

Our biggest mistake

The biggest challenges faced by the team were creating the display of the schedule and
updating the view. We only had one person creating the HTML and JavaScript on the front end.
However, the team ended up relying on a lot more logic within the front end. Having only one
person being proficient in HTML and JavaScript was not enough. Although the rest of the team
members started learning JavaScript in attempt to aid Haley, there was not enough time.
Additionally, there was no easy way to share the JavaScript and HTML code among the
members, thus it was harder for team members to split up the front end portion of the code.

Changes we would make

Some changes that would improve the Meeting Scheduler include adding an additional
person to work on JavaScript, as well as better communication between the structure and purpose
of the lambda functions. More people working on JavaScript would allow for better functionality
of the front end while creating a better blueprint for the lambda functions and connecting the
functions. This way, there would be less issues when connecting the lambda to the front end.

Lessons learned

Clear and constant communication is very important.

Advice to future teams

Have at least one member that knows JavaScript well.

6

